ME 7247: Advanced Control Systems

Supplementary notes

The Linear Quadratic Regulator

v.1.0 (11.07.2022)

In these notes, we will derive the solution to the finite-horizon linear quadratic regulator (LQR) problem in several different ways. Fundamentally, LQR can be viewed as a large least-squares problem, but we are interested in the recursive solution because it can be efficiently computed (storage and computation scale linearly with the length of the time horizon).

1 The LQR problem

We consider the discrete-time finite-horizon version of the LQR problem. Consider the dynamical system with initial state x_{0} and

$$
\begin{equation*}
x_{t+1}=A x_{t}+B u_{t} \quad \text { for } t=0, \ldots, N-1 \tag{1}
\end{equation*}
$$

The objective is to find a sequence of decisions u_{0}, \ldots, u_{N-1} that minimizes the quadratic cost

$$
J=\sum_{t=0}^{N-1} \underbrace{\left[\begin{array}{l}
x_{t} \tag{2}\\
u_{t}
\end{array}\right]^{\top}\left[\begin{array}{cc}
Q & S \\
S^{\top} & R
\end{array}\right]\left[\begin{array}{l}
x_{t} \\
u_{t}
\end{array}\right]}_{\text {stage cost }}+\underbrace{x_{N}^{\top} Q_{f} x_{N}}_{\text {terminal cost }}
$$

The only assumptions we make are that $\left[\begin{array}{cc}Q & S \\ S^{\top} & R\end{array}\right] \succeq 0, Q_{f} \succeq 0$, and $R \succ 0$. These assumptions ensure that the cost will remain bounded. We first state result, and then we derive it in many ways.

Theorem 1. The optimal decisions that solve the $L Q R$ problem are given by the state feedback policy $u_{t}=K_{t} x_{t}$ for $t=0, \ldots, N-1$. We can compute the optimal policy recursively in an offline fashion by starting at $t=N$ and working backwards to $t=0$. The recursion is:

$$
\begin{align*}
P_{N} & =Q_{f} \tag{3a}\\
P_{t} & =A^{\top} P_{t+1} A+Q-\left(A^{\top} P_{t+1} B+S\right)\left(B^{\top} P_{t+1} B+R\right)^{-1}\left(B^{\top} P_{t+1} A+S^{\boldsymbol{\top}}\right) \tag{3b}\\
K_{t} & =-\left(B^{\top} P_{t+1} B+R\right)^{-1}\left(B^{\top} P_{t+1} A+S^{\boldsymbol{\top}}\right) \tag{3c}
\end{align*}
$$

The optimal cost starting from initial condition x_{0} is given by $J_{\star}=x_{0}^{\top} P_{0} x_{0}$.

Note: We can make the state and cost matrices time-varying if we like, i.e. $A_{t}, B_{t}, Q_{t}, S_{t}, R_{t}$. The solution is exactly analogous. We just have to make the recursion time-varying. So:

$$
\begin{aligned}
P_{t} & =A_{t}^{\top} P_{t+1} A_{t}+Q_{t}-\left(A_{t}^{\top} P_{t+1} B_{t}+S_{t}\right)\left(B_{t}^{\top} P_{t+1} B_{t}+R_{t}\right)^{-1}\left(B_{t}^{\top} P_{t+1} A_{t}+S_{t}^{\top}\right) \\
K_{t} & =-\left(B_{t}^{\top} P_{k+1} B_{t}+R_{t}\right)^{-1}\left(B_{t}^{\top} P_{k+1} A_{t}+S_{t}^{\top}\right)
\end{aligned}
$$

In fact, we can even make the sizes of all matrices time-varying! For example, the state x_{t} and input u_{t} could have different sizes as t changes.

1.1 Solution via dynamic programming

Define the cost-to-go (optimal value function) for $k=0, \ldots, N$ as

$$
\left.\begin{array}{rl}
V_{k}(z):=\underset{u_{k}, \ldots, u_{N-1}}{\operatorname{minimize}} & \sum_{t=k}^{N-1}\left[\begin{array}{l}
x_{t}
\end{array}\right]^{\top}\left[\begin{array}{cc}
Q & S \\
u_{t}
\end{array}\right]^{\top} \quad R
\end{array}\right]\left[\begin{array}{l}
x_{t} \\
u_{t}
\end{array}\right]+x_{N}^{\top} Q_{f} x_{N} .
$$

Our ultimate goal is to find $V_{0}\left(x_{0}\right)$, but we will solve for all V_{k} for $k=0, \ldots, N$. By defining $w:=u_{k}$ and decomposing the value function by separating the first decision at time k from all subsequent decisions, we can show that the following recursive equation (the Bellman equation) holds:

$$
V_{k}(z)=\min _{w}\left(\left[\begin{array}{c}
z \tag{4}\\
w
\end{array}\right]^{\top}\left[\begin{array}{cc}
Q & S \\
S^{\top} & R
\end{array}\right]\left[\begin{array}{c}
z \\
w
\end{array}\right]+V_{k+1}(A z+B w)\right) \quad \text { for } k=0, \ldots, N-1 .
$$

When $k=z$, we have $V_{N}(z)=z^{\top} Q_{f} z$. We can show by induction that $V_{k}(z)$ is a positive semidefinite quadratic for all $k \leq N$. Suppose that $V_{t}(z)=z^{\top} P_{t} z$ with $P_{t} \succeq 0$ for $t=k+1$. We will prove that this holds for $t=k$ as well. Substitute into Eq. (4) and obtain

$$
\begin{align*}
V_{k}(z) & =\min _{w}\left(\left[\begin{array}{c}
z \\
w
\end{array}\right]^{\top}\left[\begin{array}{cc}
Q & S \\
S^{\top} & R
\end{array}\right]\left[\begin{array}{c}
z \\
w
\end{array}\right]+(A z+B w)^{\top} P_{k+1}(A z+B w)\right) \tag{5}\\
& =\min _{w}\left[\begin{array}{c}
z \\
w
\end{array}\right]^{\top}\left[\begin{array}{cc}
A^{\top} P_{k+1} A+Q & A^{\top} P_{k+1} B+S \\
B^{\top} P_{k+1} A+S^{\top} & B^{\top} P_{k+1} B+R
\end{array}\right]\left[\begin{array}{c}
z \\
w
\end{array}\right] \tag{6}
\end{align*}
$$

This is a standard quadratic optimization problem. Due to our assumption that $P_{k+1} \succeq 0$ and $R \succ 0$, the solution is

$$
\begin{aligned}
w^{\star} & =-\left(B^{\boldsymbol{\top}} P_{k+1} B+R\right)^{-1}\left(B^{\boldsymbol{\top}} P_{k+1} A+S^{\boldsymbol{\top}}\right) z \\
V_{k}(z) & =z^{\top}\left(A^{\top} P_{k+1} A+Q-\left(A^{\top} P_{k+1} B+S\right)\left(B^{\top} P_{k+1} B+R\right)^{-1}\left(B^{\top} P_{k+1} A+S^{\boldsymbol{\top}}\right)\right) z
\end{aligned}
$$

We deduce that $V_{k}(z)$ is also quadratic, and P_{k} satisfies the recursion (3a)-(3b) Since $w=u_{k}$ and $z=x_{k}$, we also find that the optimal policy is a state-feedback policy of the form $u_{t}=K_{t} x_{t}$, where K_{t} is given by (3c). The cost associated with using the optimal control policy starting from the state x_{0} is the cost to go $V_{0}\left(x_{0}\right)$, which is given by $x_{0}^{\top} P_{0} x_{0}$.

Note. We assumed $\left[\begin{array}{cc}Q & S \\ S^{\top} & R\end{array}\right] \succeq 0$ and $R \succ 0$, so we can prove by induction that since $P_{N}=Q_{f} \succeq 0$, each $V_{t}(z)=z^{\top} P_{t} z$ is the minimum of a positive definite quadratic function (5), and is therefore positive semidefinite, and we have $P_{t} \succeq 0$ for all t.

The above dynamic programming approach works even when the system matrices are time-varying or even have different sizes as a function of time.

1.2 Solution via completing the square

Consider the cost we are trying to minimize:

$$
J\left(x_{0}\right)=\sum_{t=0}^{N-1}\left[\begin{array}{l}
x_{t} \\
u_{t}
\end{array}\right]^{\top}\left[\begin{array}{cc}
Q & S \\
S^{\top} & R
\end{array}\right]\left[\begin{array}{l}
x_{t} \\
u_{t}
\end{array}\right]+x_{N}^{\top} Q_{f} x_{N}
$$

Let's introduce a set of matrices $P_{0}, P_{1}, \ldots, P_{N}$ and include them into the sum as follows.

$$
J\left(x_{0}\right)=x_{0}^{\top} P_{0} x_{0}+\sum_{t=0}^{N-1}\left(x_{t+1} P_{t+1} x_{t+1}-x_{t}^{\top} P_{t} x_{t}+\left[\begin{array}{l}
x_{t} \\
u_{t}
\end{array}\right]^{\top}\left[\begin{array}{cc}
Q & S \\
S^{\top} & R
\end{array}\right]\left[\begin{array}{l}
x_{t} \\
u_{t}
\end{array}\right]\right)+x_{N}^{\top}\left(Q_{f}-P_{N}\right) x_{N}
$$

Note that all the P_{t} 's cancel out, so the above expression is equal to $J\left(x_{0}\right)$ no matter what values we pick for the P_{t} 's. Start by substituting $x_{t+1}=A x_{t}+B u_{t}$ in the sum and it becomes

$$
J\left(x_{0}\right)=x_{0}^{\top} P_{0} x_{0}+\sum_{t=0}^{N-1}\left[\begin{array}{l}
x_{t} \\
u_{t}
\end{array}\right]^{\top}\left[\begin{array}{cc}
A^{\top} P_{t+1} A-P_{t}+Q & A^{\top} P_{t+1} B+S \\
B^{\top} P_{t+1} A+S^{\top} & B^{\top} P_{t+1} B+R
\end{array}\right]\left[\begin{array}{l}
x_{t} \\
u_{t}
\end{array}\right]+x_{N}^{\top}\left(Q_{f}-P_{N}\right) x_{N} .
$$

Recall the completion of squares formula (LDU factorization):

$$
\left[\begin{array}{l}
x \\
u
\end{array}\right]^{\top}\left[\begin{array}{cc}
A & B \\
B^{\top} & C
\end{array}\right]\left[\begin{array}{l}
x \\
u
\end{array}\right]=x^{\boldsymbol{\top}}\left(A-B C^{-1} B^{\boldsymbol{\top}}\right) x+\left(u-C^{-1} B^{\boldsymbol{\top}} x\right)^{\top} C\left(u-C^{-1} B^{\top} x\right)
$$

Applying this to the quadratic form in the sum, we obtain:

$$
\begin{aligned}
& J\left(x_{0}\right)=x_{0}^{\top} P_{0} x_{0} \\
& +\sum_{t=0}^{N-1} x_{t}^{\top}\left(A^{\top} P_{t+1} A-P_{t}+Q-\left(A^{\top} P_{t+1} B+S\right)\left(B^{\top} P_{t+1} B+R\right)^{-1}\left(B^{\top} P_{t+1} A+S^{\boldsymbol{\top}}\right)\right) x_{t} \\
& +\sum_{t=0}^{N-1}\left(u_{t}-K_{t} x_{t}\right)^{\top}\left(B^{\top} P_{t+1} B+R\right)\left(u_{t}-K_{t} x_{t}\right)+x_{N}^{\top}\left(Q_{f}-P_{N}\right) x_{N}
\end{aligned}
$$

where we defined K_{t} as in (3c). Again, remember that this expression for $J\left(x_{0}\right)$ does not depend on the choice of the P_{t} 's. So we can choose them however we like. In particular, if we choose P_{t} so that it satisfies (3a)-(3b), the sum simplifies greatly to

$$
\begin{equation*}
J\left(x_{0}\right)=x_{0}^{\boldsymbol{\top}} P_{0} x_{0}+\sum_{t=0}^{N-1}\left(u_{t}-K_{t} x_{t}\right)^{\top}\left(B^{\boldsymbol{\top}} P_{t+1} B+R\right)\left(u_{t}-K_{t} x_{t}\right) . \tag{7}
\end{equation*}
$$

We also have $P_{t} \succeq 0$ for all t (see the note at the end of Section 1.1). Therefore each term in the sum is nonnegative. We can minimize $J\left(x_{0}\right)$ by picking $u_{t}=K_{t} x_{t}$, which leaves us with the optimal $\operatorname{cost} J_{\star}=x_{0}^{\top} P_{0} x_{0}$.

Note. If we use a suboptimal policy \hat{K}_{t} instead of the optimal K_{t}, then the formula (7) reveals exactly the extra cost we will have to pay. In particular,

$$
J_{\mathrm{extra}}=\sum_{t=0}^{N-1} x_{t}^{\top}\left(\hat{K}_{t}-K_{t}\right)^{\top}\left(B^{\top} P_{t+1} B+R\right)\left(\hat{K}_{t}-K_{t}\right) x_{t}
$$

1.3 Solution via block elimination

We will make use of block variable elimination. Here is a useful result that is easy to prove.
Proposition 1 (block elimination). Suppose we have linear equations of the form

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
p \\
0
\end{array}\right],
$$

where D is square and invertible. If we solve for y in the second equation and substitute the result into the first equation, we obtain

$$
\left(A-B D^{-1} C\right) x=p \quad \text { and } \quad y=-D^{-1} C x .
$$

We will make use of this result throughout the following derivation.
Write out the objective and all constraints as a large optimization problem. Here, we treat both the states and inputs as variables, and we include the state dynamics as constraints.

$$
\begin{aligned}
\operatorname{minimize}_{\substack{x_{1}, \ldots, x_{N}, u_{0}, \ldots, u_{N-1}}} & \sum_{t=0}^{N-1}\left[\begin{array}{l}
x_{t} \\
u_{t}
\end{array}\right]^{\top}\left[\begin{array}{cc}
Q & S \\
S^{\top} & R
\end{array}\right]\left[\begin{array}{l}
x_{t} \\
u_{t}
\end{array}\right]+x_{N}^{\top} Q_{f} x_{N} \\
\text { s.t. } & x_{t+1}=A x_{t}+B u_{t} \quad \text { for } t=0, \ldots, N-1
\end{aligned}
$$

Assign the Lagrange multiplier λ_{t+1} to the equality constraints for $t=0, \ldots, N-1$. The Lagrangian for the problem is therefore:

$$
L(x, u, \lambda)=\frac{1}{2} \sum_{t=0}^{N-1}\left[\begin{array}{l}
x_{t} \\
u_{t}
\end{array}\right]^{\top}\left[\begin{array}{cc}
Q & S \\
S^{\top} & R
\end{array}\right]\left[\begin{array}{l}
x_{t} \\
u_{t}
\end{array}\right]+\frac{1}{2} x_{N}^{\top} Q_{f} x_{N}-\sum_{t=0}^{N-1} \lambda_{t+1}^{\top}\left(x_{t+1}-A x_{t}-B u_{t}\right)
$$

The factors of $\frac{1}{2}$ are there to make the algebra nicer. The KKT necessary conditions for optimality are $\nabla_{x} L=0, \nabla_{u} L=0$, and $\nabla_{\lambda} L=0$. Evaluating these gradients, we obtain the equations

$$
\begin{array}{rlr}
Q x_{t}+S u_{t}+A^{\top} \lambda_{t+1}-\lambda_{t}=0 & \text { for } t=0, \ldots, N-1 \\
Q_{f} x_{N}-\lambda_{N}=0 & \\
S^{\top} x_{t}+R u_{t}+B^{\top} \lambda_{t+1}=0 & \text { for } t=0, \ldots, N-1 \\
A x_{t}+B u_{t}-x_{t+1}=0 & \text { for } t=0, \ldots, N-1
\end{array}
$$

Merging these together as a single set of linear equations, we obtain:

$$
\begin{align*}
\lambda_{N} & =Q_{f} x_{N} \tag{8a}\\
{\left[\begin{array}{c}
\lambda_{t} \\
0 \\
x_{t+1}
\end{array}\right] } & =\left[\begin{array}{ccc}
Q & S & A^{\top} \\
S^{\top} & R & B^{\top} \\
A & B & 0
\end{array}\right]\left[\begin{array}{c}
x_{t} \\
u_{t} \\
\lambda_{t+1}
\end{array}\right] \quad \text { for } t=0, \ldots, N-1 \tag{8b}
\end{align*}
$$

We will prove by induction that $\lambda_{t}=P_{t} x_{t}$ for all t. From (8a), the result holds for $t=N$ with $P_{N}=Q_{f}$. Suppose it holds for $t+1$. Substitute $\lambda_{t+1}=P_{t+1} x_{t+1}$ into (8b) and obtain:

$$
\left[\begin{array}{c}
\lambda_{t} \tag{9}\\
0 \\
0
\end{array}\right]=\left[\begin{array}{ccc}
Q & S & A^{\top} P_{t+1} \\
S^{\top} & R & B^{\top} P_{t+1} \\
A & B & -I
\end{array}\right]\left[\begin{array}{c}
x_{t} \\
u_{t} \\
x_{t+1}
\end{array}\right]
$$

Apply Proposition 1 to eliminate x_{t+1} from (9), which leads to:

$$
\left[\begin{array}{c}
\lambda_{t} \\
0
\end{array}\right]=\left[\begin{array}{cc}
A^{\top} P_{t+1} A+Q & A^{\top} P_{t+1} B+S \\
B^{\top} P_{t+1} A+S^{\top} & B^{\top} P_{t+1} B+R
\end{array}\right]\left[\begin{array}{c}
x_{t} \\
u_{t}
\end{array}\right]
$$

Apply Proposition 1 once more to eliminate u_{t}, which leads to:

$$
\begin{aligned}
& \lambda_{t}=\left(A^{\boldsymbol{\top}} P_{t+1} A+Q-\left(A^{\top} P_{t+1} B+S\right)\left(B^{\boldsymbol{\top}} P_{t+1} B+R\right)^{-1}\left(B^{\boldsymbol{\top}} P_{t+1} A+S^{\boldsymbol{\top}}\right)\right) x_{t} \\
& u_{t}=-\left(B^{\boldsymbol{\top}} P_{t+1} B+R\right)^{-1}\left(B^{\boldsymbol{\top}} P_{t+1} A+S^{\boldsymbol{\top}}\right) x_{t}
\end{aligned}
$$

Therefore, we have $\lambda_{t}=P_{t} x_{t}$, which is what we wanted to prove, and the recursion for P_{t} and the expression for K_{t} are precisely the solution we previously found in Eq. (3).

Alternative elimination ordering. If we eliminate the variables in a different order, we get different (but equivalent) expressions for the P_{t} recursion and for K_{t}. Specifically, if we start from (9) but apply Proposition 1 to eliminate u_{t} first, we obtain:

$$
\begin{aligned}
{\left[\begin{array}{c}
\lambda_{t} \\
0
\end{array}\right] } & =\left[\begin{array}{cc}
Q-S R^{-1} S^{\top} & A^{\top} P_{t+1}-S R^{-1} B^{\top} P_{t+1} \\
A-B R^{-1} S^{\top} & -I-B R^{-1} B^{\top} P_{t+1}
\end{array}\right]\left[\begin{array}{c}
x_{t} \\
x_{t+1}
\end{array}\right] \\
u_{t} & =-R^{-1}\left(S^{\top} x_{t}+B^{\top} P_{t+1} x_{t+1}\right)
\end{aligned}
$$

To ease the notation, define:

$$
E:=A-B R^{-1} S^{\top} \quad G:=B R^{-1} B^{\top} \quad \bar{Q}:=Q-S R^{-1} S^{\top}
$$

Based on our original problem assumptions, we have $G \succeq 0$ and $\bar{Q} \succeq 0$. Using our new variable definitions, the equations simplify to:

$$
\begin{aligned}
{\left[\begin{array}{c}
\lambda_{t} \\
0
\end{array}\right] } & =\left[\begin{array}{cc}
\bar{Q} & E^{\boldsymbol{\top}} P_{t+1} \\
E & -\left(I+G P_{t+1}\right)
\end{array}\right]\left[\begin{array}{c}
x_{t} \\
x_{t+1}
\end{array}\right] \\
u_{t} & =-R^{-1}\left(S^{\boldsymbol{\top}} x_{t}+B^{\boldsymbol{\top}} P_{t+1} x_{t+1}\right)
\end{aligned}
$$

Now apply Proposition 1 to eliminate x_{t+1} and obtain:

$$
\begin{aligned}
\lambda_{t} & =\left(\bar{Q}+E^{\boldsymbol{\top}} P_{t+1}\left(I+G P_{t+1}\right)^{-1} E\right) x_{t} \\
u_{t} & =-R^{-1}\left(S^{\boldsymbol{\top}}+B^{\boldsymbol{\top}} P_{t+1}\left(I+G P_{t+1}\right)^{-1} E\right) x_{t} \\
x_{t+1} & =\left(I+G P_{t+1}\right)^{-1} E x_{t}
\end{aligned}
$$

This yields new (but equivalent!) formulas for the optimal controller (3) and the optimal closed-loop matrix $A+B K_{t}$.

$$
\begin{align*}
P_{N} & =Q_{f} \\
P_{t} & =\bar{Q}+E^{\top} P_{t+1}\left(I+G P_{t+1}\right)^{-1} E \\
K_{t} & =-R^{-1}\left(S^{\top}+B^{\top} P_{t+1}\left(I+G P_{t+1}\right)^{-1} E\right) \tag{10}\\
A+B K_{t} & =\left(I+G P_{t+1}\right)^{-1} E
\end{align*}
$$

1.4 Solution via adjoint equations

This approach is similar to the block elimination approach of Section 1.3. We start with (8):

$$
\begin{align*}
\lambda_{N} & =Q_{f} x_{N} \tag{11a}\\
{\left[\begin{array}{c}
\lambda_{t} \\
0 \\
x_{t+1}
\end{array}\right] } & =\left[\begin{array}{ccc}
Q & S & A^{\top} \\
S^{\top} & R & B^{\top} \\
A & B & 0
\end{array}\right]\left[\begin{array}{c}
x_{t} \\
u_{t} \\
\lambda_{t+1}
\end{array}\right] \quad \text { for } t=0, \ldots, N-1 \tag{11b}
\end{align*}
$$

Eliminate u_{t} right away using Proposition 1 and use the same new variables as in Section 1.3:

$$
E:=A-B R^{-1} S^{\top} \quad G:=B R^{-1} B^{\top} \quad \bar{Q}:=Q-S R^{-1} S^{\top}
$$

This yields the so-called adjoint equations:

$$
\begin{align*}
\lambda_{N} & =Q_{f} x_{N} \tag{12a}\\
{\left[\begin{array}{c}
x_{t+1} \\
\lambda_{t}
\end{array}\right] } & =\left[\begin{array}{ll}
E & -G \\
\bar{Q} & E^{\top}
\end{array}\right]\left[\begin{array}{c}
x_{t} \\
\lambda_{t+1}
\end{array}\right] \tag{12b}
\end{align*}
$$

This is a difference equation with the state x_{t} equation evolving forward in time and co-state λ_{t} equation evolving backward in time. There is also a boundary condition that couples the variables at the terminal timestep. From here, we could prove $\lambda_{t}=P_{t} x_{t}$ using induction as we did in Section 1.3. Another approach is to rearrange (12) so that both equations go forward in time, which yields

$$
\begin{align*}
\lambda_{N} & =Q_{f} x_{N} \tag{13a}\\
{\left[\begin{array}{cc}
I & G \\
0 & E^{\top}
\end{array}\right]\left[\begin{array}{c}
x_{t+1} \\
\lambda_{t+1}
\end{array}\right] } & =\left[\begin{array}{cc}
E & 0 \\
-\bar{Q} & I
\end{array}\right]\left[\begin{array}{c}
x_{t} \\
\lambda_{t}
\end{array}\right] \tag{13b}
\end{align*}
$$

If E is invertible, we can invert the matrix on the left-hand side and write the equations as

$$
\begin{aligned}
\lambda_{N} & =Q_{f} x_{N} \\
{\left[\begin{array}{c}
x_{t+1} \\
\lambda_{t+1}
\end{array}\right] } & =\left[\begin{array}{cc}
E+G E^{-\mathrm{T}} \bar{Q} & -G E^{-\mathrm{T}} \\
-E^{-\mathrm{T}} \bar{Q} & E^{-\mathrm{T}}
\end{array}\right]\left[\begin{array}{c}
x_{t} \\
\lambda_{t}
\end{array}\right]
\end{aligned}
$$

The 2×2 block matrix above is a symplectic matrix and has some useful properties, such as if λ is an eigenvalue, so is λ^{-1}. Such matrices play an important role in the study of Algebraic Riccati Equations. Consider a set of matrices $P_{0}, P_{1}, \ldots, P_{N}$ and write:

$$
\begin{aligned}
& {\left[\begin{array}{c}
x_{t+1} \\
\lambda_{t+1}-P_{t+1} x_{t+1}
\end{array}\right]} \\
& =\left[\begin{array}{cc}
I & 0 \\
-P_{t+1} & I
\end{array}\right]\left[\begin{array}{l}
x_{t+1} \\
\lambda_{t+1}
\end{array}\right] \\
& =\left[\begin{array}{cc}
I & 0 \\
-P_{t+1} & I
\end{array}\right]\left[\begin{array}{cc}
E+G E^{-\mathrm{T}} \bar{Q} & -G E^{-\mathrm{T}} \\
-E^{-\mathrm{T}} \bar{Q} & E^{-\mathrm{T}}
\end{array}\right]\left[\begin{array}{c}
x_{t} \\
\lambda_{t}
\end{array}\right] \\
& =\left[\begin{array}{cc}
I & 0 \\
-P_{t+1} & I
\end{array}\right]\left[\begin{array}{cc}
E+G E^{-\mathrm{T}} \bar{Q} & -G E^{-\mathrm{T}} \\
-E^{-\mathrm{T}} \bar{Q} & E^{-\mathrm{T}}
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
P_{t} & I
\end{array}\right]\left[\begin{array}{c}
x_{t} \\
\lambda_{t}-P_{t} x_{t}
\end{array}\right] \\
& E+G E^{-\mathrm{T}} \bar{Q}-G E^{-\mathrm{T}} P_{t} \\
& =\left[\begin{array}{cc}
\\
-P_{t+1} E-P_{t+1} G E^{-\mathrm{T}} \bar{Q}+P_{t+1} G E^{-\mathrm{T}} P_{t}+E^{-\mathrm{T}} P_{t}-E^{-\mathrm{T}} \bar{Q} & P_{t+1} G E^{-\mathrm{T}}+E^{-\mathrm{T}}
\end{array}\right]\left[\begin{array}{cc}
x_{t} \\
\lambda_{t}-P_{t} x_{t}
\end{array}\right]
\end{aligned}
$$

Note that this holds for any choice of the P_{t}, since we added and subtracted it without changing anything. Consider the $(2,1)$ block of the transition matrix:

$$
\begin{aligned}
& -P_{t+1} E-P_{t+1} G E^{-\mathrm{T}} \bar{Q}+P_{t+1} G E^{-\mathrm{T}} P_{t}+E^{-\mathrm{T}} P_{t}-E^{-\mathrm{T}} \bar{Q} \\
& =-P_{t+1} E+\left(P_{t+1} G+I\right) E^{-\mathrm{T}}\left(P_{t}-\bar{Q}\right)
\end{aligned}
$$

This can be made zero if we choose $P_{t}=\bar{Q}+E^{\boldsymbol{\top}} P_{t+1}\left(I+G P_{t+1}\right)^{-1} E$, which is precisely the alternative form for the solution we derived in (10). With this choice, our adjoint equations become:

$$
\left[\begin{array}{c}
x_{t+1} \\
\lambda_{t+1}-P_{t+1} x_{t+1}
\end{array}\right]=\left[\begin{array}{cc}
E+G E^{-\mathrm{T}} \bar{Q}-G E^{-\mathrm{T}} P_{t} & -G E^{-\mathrm{T}} \\
0 & P_{t+1} G E^{-\mathrm{T}}+E^{-\mathrm{T}}
\end{array}\right]\left[\begin{array}{c}
x_{t} \\
\lambda_{t}-P_{t} x_{t}
\end{array}\right]
$$

Substituting for P_{t} and simplifying, we obtain:

$$
\left[\begin{array}{c}
x_{t+1} \\
\lambda_{t+1}-P_{t+1} x_{t+1}
\end{array}\right]=\left[\begin{array}{cc}
\left(I+G P_{t+1}\right)^{-1} E & -G E^{-\mathrm{T}} \\
0 & \left(I+P_{t+1} G\right) E^{-\mathrm{T}}
\end{array}\right]\left[\begin{array}{c}
x_{t} \\
\lambda_{t}-P_{t} x_{t}
\end{array}\right]
$$

Now recall from (10) that $A+B K_{t}=\left(I+G P_{t+1}\right)^{-1} E$, so we have:

$$
\left[\begin{array}{c}
x_{t+1} \\
\lambda_{t+1}-P_{t+1} x_{t+1}
\end{array}\right]=\left[\begin{array}{cc}
A+B K_{t} & -G E^{-\mathrm{T}} \\
0 & \left(A+B K_{t}\right)^{-\mathrm{T}}
\end{array}\right]\left[\begin{array}{c}
x_{t} \\
\lambda_{t}-P_{t} x_{t}
\end{array}\right]
$$

From here, we easily see that if $\lambda_{t+1}=P_{t+1} x_{t+1}$, then we must also have $\lambda_{t}=P_{t} x_{t}$ and this completes the proof. The equations also simplify to $x_{t+1}=\left(A+B K_{t}\right) x_{t}$, which are the closed-loop equations we expected to see.

Infinte-horizon LQR. This formulation using the adjoint equation is particularly useful when solving the infinite-horizon LQR problem. In the infinite-horizon setting, we have $P_{t}=P_{t+1}=P$, so the transformation of the symplectic matrix preserves eigenvalues, and we have:

$$
\left[\begin{array}{cc}
I & 0 \tag{14}\\
-P & I
\end{array}\right] \underbrace{\left[\begin{array}{cc}
E+G E^{-\mathrm{T}} \bar{Q} & -G E^{-\mathrm{T}} \\
-E^{-\mathrm{\top}} \bar{Q} & E^{-\mathrm{\top}}
\end{array}\right]}_{M}\left[\begin{array}{cc}
I & 0 \\
P & I
\end{array}\right]=\left[\begin{array}{cc}
A+B K & -G E^{-\mathrm{\top}} \\
0 & (A+B K)^{-\mathrm{\top}}
\end{array}\right] .
$$

This observation is the key to solving the Discrete Algebraic Riccati Equation (DARE): eigenvalues of the symplectic matrix M are the eigenvalues of the LQR-optimal closed-loop map (stable) and their conjugate inverses (unstable). Multiply (14) by $\left[\begin{array}{l}I \\ P \\ P\end{array}\right](\ldots)\left[\begin{array}{l}I \\ 0\end{array}\right]$ and obtain

$$
M\left[\begin{array}{l}
I \tag{15}\\
P
\end{array}\right]=\left[\begin{array}{l}
I \\
P
\end{array}\right](A+B K) .
$$

The stable eigenvalues of M are the eigenvalues of $(A+B K)$. So if we diagonalize M and collect all stable eigenvalues in the diagonal matrix Λ, we can write the eigenvalue decomposition

$$
M\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right] \Lambda .
$$

Under suitable assumptions, V_{1} will be invertible. Multiply on the right by V_{1}^{-1} and obtain

$$
M\left[\begin{array}{c}
I \\
V_{2} V_{1}^{-1}
\end{array}\right]=\left[\begin{array}{c}
I \\
V_{2} V_{1}^{-1}
\end{array}\right]\left(V_{1} \Lambda V_{1}^{-1}\right) .
$$

Note the similarity with (15). It takes some work to prove the details, but it turns out that $P=V_{2} V_{1}^{-1}$ is the (unique) stabilizing solution to the DARE, and $V_{1} \Lambda V_{1}^{-1}=A+B K$ is the LQR-optimal closed-loop map.

